FEASIBILITY STUDY
OF
5.56 MM FOLDED AMMUNITION/WEAPON SYSTEM

by

Reed E. Donnard
Richard R. Rhodes
Thomas J. Hennessy

September 1976

Approved for public release; distribution unlimited.
DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
FEASIBILITY STUDY OF 5.56 MM FOLDED AMMUNITION/WEAPON SYSTEM

Authors:
Reed E. Donnard
Richard R. Rhodes
Thomas J. Hennessy

Performing Organization Name and Address:
Frankford Arsenal
Attn: SARFA-MDS-S
Philadelphia, PA 19137

Report Date:
September 1976

Abstract:
Folded Ammunition is a unique concept in ammunition design that relocates the propellant charge from the conventional position behind and coaxial with the projectile to one beside the projectile. For a given energy output, conventional axially symmetric ammunition cartridges do not provide the most efficient geometrical shape for a minimum system parametric profile (system length, weight and bulk). Reconfiguration...
18. SUPPLEMENTARY NOTES - Cont'd

Concept Description Andrew J. Grandy
Design Analysis James R. Harris
Fabrication Processing John F. Kloskey
Samuel J. Marziano
Albert Zalcmann
Firing Fixture Design John A. Duffy
Robert W. Markgraf

20. ABSTRACT - Cont'd

of the cartridge using the Folded Ammunition approach makes possible now what had previously been unattainable in the way of weapon/ammunition system optimization. This report describes the concept, outlines its advantages and presents the results of a short-term analytical and experimental program that successfully demonstrated the feasibility of Folded Ammunition.
TABLE OF CONTENTS

INTRODUCTION. .. 3

DISCUSSION ... 9

 Design Analysis ... 9
 Ballistic Studies ... 19
 Case Fabrication ... 25
 Automatic Firing Test Fixtures 33

CONCLUSIONS AND RECOMMENDATIONS 37

APPENDIX A - US Patent No. 3857339. 38
 B - Representative Firing Data 58
 C - Tool Drawings for Case Extrusion Process 60
 D - Folded Cartridge Details 70
 E - Modified M16A1 Details .. 77
 F - Modified Belgian LAR Details 103

DISTRIBUTION. .. 144

List of Tables

Table

I. Chamber Deflection at Nodes Located on I.D. 18
II. Comparison of Internal Diameter Deflections. 19
III. Hardness Readings of Heat-Treated Carburized Cases 28
IV. Hardness Readings of Heat-Treated Uncarburized Cases 32

List of Illustrations

Figure

1. Ammunition Concept. .. 4
2. Ammunition/Weapon System Comparison 5
3. Conventional vs Folded Packing Volume Comparisons 6
4. Cartridge Comparisons. ... 8
List of Illustrations - Cont’d

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Design Analysis</td>
<td>10</td>
</tr>
<tr>
<td>6.</td>
<td>Folded Chamber Starting Grid (Rear Section)</td>
<td>12</td>
</tr>
<tr>
<td>7.</td>
<td>Folded Chamber Starting Grid (Mid-Section)</td>
<td>13</td>
</tr>
<tr>
<td>8.</td>
<td>Folded Chamber Stress Plot (Rear Section)</td>
<td>14</td>
</tr>
<tr>
<td>9.</td>
<td>Folded Chamber Stress Plot (Mid-Section)</td>
<td>15</td>
</tr>
<tr>
<td>10.</td>
<td>Folded Chamber Distortion Plot (Rear Section)</td>
<td>16</td>
</tr>
<tr>
<td>11.</td>
<td>Folded Chamber Distortion Plot (Mid-Section)</td>
<td>17</td>
</tr>
<tr>
<td>12.</td>
<td>Ballistic Test Cartridge</td>
<td>20</td>
</tr>
<tr>
<td>13.</td>
<td>Gas Flow Control Liner</td>
<td>21</td>
</tr>
<tr>
<td>14.</td>
<td>Bolt Cavity Pressure vs Port Position</td>
<td>23</td>
</tr>
<tr>
<td>15.</td>
<td>Interior Ballistics Comparison</td>
<td>24</td>
</tr>
<tr>
<td>16.</td>
<td>Initial Extrusion Process for Folded Cartridge Case</td>
<td>26</td>
</tr>
<tr>
<td>17.</td>
<td>Blank, Cup, and Draw Process for Standard Ammunition</td>
<td>27</td>
</tr>
<tr>
<td>18.</td>
<td>Carburized Microstructure for Folded Cartridge Case</td>
<td>29</td>
</tr>
<tr>
<td>19.</td>
<td>Final Extrusion Process for Folded Cartridge Case</td>
<td>30</td>
</tr>
<tr>
<td>20.</td>
<td>Load and Assembly Process</td>
<td>31</td>
</tr>
<tr>
<td>21.</td>
<td>Assembled 5.56 mm Folded Cartridge</td>
<td>32</td>
</tr>
<tr>
<td>22.</td>
<td>Automatic Firing Test Fixtures</td>
<td>34</td>
</tr>
<tr>
<td>23.</td>
<td>Modified M16A1 Firing Sequence</td>
<td>35</td>
</tr>
</tbody>
</table>
INTRODUCTION

Folded Ammunition is a unique concept in ammunition design that relocates the propellant charge from the convention position behind and coaxial with the projectile to one beside the projectile (Figure 1). US Patent 3857339, shown in Appendix A, documents this concept. For a given energy output, conventional axially symmetric ammunition cartridges do not provide the most efficient geometrical shape for a minimum system parametric profile (system length, weight and bulk). Reconfiguration of the cartridge using the Folded Ammunition approach makes possible now what had previously been unattainable in the way of weapon/ammunition system optimization.

Figure 2 depicts the Weapon/Ammunition systems relationships in diagramed cross-sectional view. The basis for weight saving in the Folded Cartridge can be seen as the result of complete support afforded by the weapon which permits use of a uniformly thin-walled cartridge case. In addition to the significant savings in cartridge weight, the shortened cartridge length results in another important system improvement, i.e., shortened minimum bolt stroke of the weapon. At least two weapon benefits arise from this attribute. These are: (1) a greater range in cyclic rate capability including increased cyclic rate if desired, and (2) reduced bolt velocity for a given cyclic rate. This latter feature would be a direct contributing factor to increased weapons parts life.

Perhaps the most far-reaching attribute of the Folded Ammunition concept is the significant reduction in "packing volume" occupied by the cartridge in comparison to conventional axisymmetrically shaped ammunition. Figure 3 reveals the geometrical basis for this statement of fact. The packing volume occupied by the cartridge is defined as the minimum dimension rectangular solid encasing the cartridge. The shaded area around the cartridge represents dead space which detracts from packing efficiency. In this illustration, a conventional 5.56 mm FABRL cartridge is shown in side and end views with appropriate dimensions. The packing volume of this cartridge is:

\[V_p = l \times d^2 = 0.323 \text{ in}^3 \]

where:

- \(V_p \) = packing volume in inches\(^3\)
- \(l \) = cartridge length in inches
- \(d \) = cartridge case base diameter in inches

In contrast, the three views of a 5.56 mm Folded Cartridge represent the cartridge size in the folded configuration required to house the same propellant charge and fire the same projectile at the same velocity as
the conventional. Using the same packing volume analogy as that for the conventional cartridge, it can be seen that the packing volume (rectangular volume or envelope occupied by the folded cartridge) is significantly smaller than that of the conventional cartridge. This is verified by calculating the new cartridge volume. Thus:

\[V'_p = l' \cdot w \cdot h = 0.228 \text{ in}^3 \]

where:

- \(V'_p \) = packing volume in inches\(^3\)
- \(l' \) = cartridge length in inches
- \(w \) = cartridge width in inches
- \(h \) = cartridge height in inches

This represents about a 29 percent volume decrease based on the packing volume of the conventional 5.56 mm FABRL cartridge. This is the dramatic space saving result of Folded Ammunition.

Using examples in all three caliber regimes (small, automatic cannon and large), the comparisons shown in Figure 4 have been projected to show the universality of cartridge geometric and weight savings that can accrue using the folded design. It is interesting to note that even though the 30 mm GAU-8 cartridge has an aluminum case, a weight reduction is still indicated in the folded version utilizing a thin wall steel case. An excellent illustration of the operational potential of this new idea is to compare the effect it would have on the infantry soldier using the M16A1 rifle and 5.56 mm ammunition as a reference. In the infantry squad, the rifleman can carry 450 rounds comprising a weight of about 16.4 pounds. With Folded Ammunition, this weight is reduced to 13.5 pounds. Or, keeping the ammunition load at 16.4 pounds, he would carry approximately 574 rounds, an increase of 124 cartridges (27 percent of the basic load). In addition to this, it is estimated that weapon length could be decreased (due to reduced length of bolt stroke and chamber) with a resultant weight saving of about 1/4 pound.

In connection with the shortened bolt stroke of the weapon, at least two advantages are pertinent. Of course, rate of fire can be extended more easily into the higher ranges if that is desired. But, for a given rate of fire, the shortened bolt stroke should enable weapon designers to reduce acceleration of the bolt and associated parts with a resultant benefit to parts life.

From the systems viewpoint, and aside from the logistic aspects, improvement in space utilization is of particular importance equally in vehicle and tank turret application. This is true not only for ammunition oriented space utilization, but also for weapon intrusion into otherwise cramped quarters. Shortened ram stroke requirements
CONVENTIONAL DESIGN

<table>
<thead>
<tr>
<th>VOLUME REDUCTION %</th>
<th>LENGTH REDUCTION %</th>
<th>WEIGHT REDUCTION %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.56 MM M193</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>5.56 MM FABRL</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>7.62 MM M80</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>30 MM GAU-8</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>60 MM MCAAAAC</td>
<td>42</td>
<td>22</td>
</tr>
</tbody>
</table>

Figure 4. Cartridge Comparisons
play a significant role here. Additionally, the advantages in system applications to aircraft where volume and/or weight savings can be critical should not be overlooked.

DISCUSSION

Based on the significant potential advantages offered by the concept of Folded Ammunition, a hardware-oriented study was undertaken to investigate the basic feasibility of this new idea and determine the practicality of adapting it to a working system design. The feasibility investigation consisted of a series of interrelated activities combining analytical and hardware phases which served as the basis for the feasibility assessment. These included design analysis, ballistic studies, case fabrication processes and automatic firing fixture elevation.

Design Analysis

The experimental folded test weapon chamber and ammunition cartridge case were designed using the finite element stress analysis technique which took into account chamber and case deflections at peak pressure for satisfactory case performance. The analysis was made using a cartridge configuration designed around the 5.56 mm FABRL projectile. As illustrated in Figure 5, there is a significant difference in the weapon support given to the cartridge case in the folded configuration as opposed to conventional. In order to provide for extractor engagement with conventional design, the case head can be only partially supported. Thus, it must be relatively massive to withstand the pressure developed by the burning propellant. On the other hand, Folded Ammunition can be fully supported since the cartridge case is not extracted from the rear but is pushed out from the front of the propellant capsule. This permits the design of a case which is thin wall in construction in the head as well as the body. Since approximately 40 percent of conventional case weight is in the head region, a considerable weight saving is achieved.

The analysis required to design a Folded Ammunition case is less than that required for the conventional round because the folded case is completely inclosed by the chamber. The strength requirements in the case are determined solely by the need for case recovery after firing.

The first part of the analysis is calculation of the radial expansion of the inside chamber wall as a function of chamber pressure. Conventional weapon chambers are bodies of revolution with simple generating curves. Usually, the chamber may be approximated as an assembly of uniform cylinders. The deflection of a uniform cylinder under internal pressure is:
Figure 5. Design Analysis
\[\sigma = \frac{r_i P}{E} \left[\frac{1 + \left(\frac{r_i}{r_o}\right)^2}{1 - \left(\frac{r_i}{r_o}\right)^2} \right] \]

where:

- \(E \) = Young's Modulus of Elasticity
- \(P \) = Chamber pressure in psi
- \(r_i \) = Inside chamber radius in inches
- \(r_o \) = Outside chamber radius in inches
- \(\sigma \) = Deflection of inside chamber radius in inches
- \(\gamma \) = Poisson's ratio

The Folded Ammunition case, however, is not a simple body of revolution. In fact, a complete stress analysis of the chamber or case would require solution of the three-dimensional Balltrami-Mitchell equations. However, an approximation of chamber deflection can be obtained by analyzing cross-sectional slices of the chamber as two-dimensional problems. Using this approach, considered sufficient for this analysis, two sections, one at the rear and the other at the mid-section of the chamber, were chosen. A finite element grid was prepared for each section. The starting grids are shown in Figures 6 and 7, and the results of the analyses are shown in Figures 8 and 9. These plots show lines of constant stress at intervals of 250 psi throughout each cross section. Figures 10 and 11 show a plot of the deformed geometry (solid lines) superimposed on a plot of the original grid (dashed lines). Both sections are assumed to be sections of long regular bodies, i.e., in plane strain. This means that the axial variation of stress in the weapon chamber is completely neglected and axial stress is assumed to be zero. This assumption gives radial chamber deflections that we estimate to be 10 to 20 percent greater than actually occur in the weapon, thus making the analysis conservative.

Table I presents the x and y components of the deformation vector of the nodal points on the interior radius of the chamber. The numbers may be combined vectorially to yield the radial deflection at each point. These, in turn, are averaged to determine the average radial deflection in the cross section.

Once the average radial deflections are known, case yield strength is determined so that the case will recover enough of its original shape after pressurization to insure extraction. Specifically, the requirement that case radial recovery be greater than chamber deflection implies that static extraction force is zero at zero chamber pressure.
Figure 6: Folded Chamber Starling Grid (Rear Section)
Figure 7. Folded Chamber Starting Grid (Mid-Section)
Figure 8. Folded Chamber Stress Plot (Rear Section)
Figure 11. Folded Chamber Distortion Plot (Mid-Section)
TABLE 1.
Chamber Deflection at Nodes Located on I.D.

<table>
<thead>
<tr>
<th>Rear Section (Ellipse)</th>
<th>Middle Section (2 Holes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(10^-6 in.)</td>
<td>Y(10^-6 in.)</td>
</tr>
<tr>
<td>26 0.</td>
<td>0.</td>
</tr>
<tr>
<td>26 0.</td>
<td>0.</td>
</tr>
<tr>
<td>25 0.</td>
<td>0.</td>
</tr>
<tr>
<td>23 0.</td>
<td>0.</td>
</tr>
<tr>
<td>21 0.</td>
<td>0.</td>
</tr>
<tr>
<td>19 0.</td>
<td>0.</td>
</tr>
<tr>
<td>16 0.</td>
<td>0.</td>
</tr>
<tr>
<td>13 0.</td>
<td>0.</td>
</tr>
<tr>
<td>9 0.</td>
<td>0.</td>
</tr>
</tbody>
</table>

Average radial deflection =

\[
19.7 \times 10^{-6} \ \text{inches} \ \frac{1}{1000 \ \text{psi}}
\]

Application of thin shell theory to the cylindrical portion of the Folded Ammunition case permits this criteria to be expressed as:

\[
\left[\frac{2}{\sqrt{3}} - \frac{Y}{\sqrt{3}} \right] \frac{\sigma_{\text{Yield}}}{E} \geq \frac{\sigma}{r}
\]

where:

\(\sigma_{\text{Yield}}\) = Yield strength of cartridge case material

This approach in conjunction with the results from Table 1 gives a minimum yield strength of 102,000 psi for a chamber pressure of 65,000 psi. Similar calculations carried out for the rear section of the case indicate a minimum required yield strength of 164,000 psi.

The results of this analysis can be compared with the known solution for a thick-walled cylinder. The purpose of the comparison is to see how much effect increasing the barrel outside diameter has on reducing the minimum yield strength values required in the case. As the outside diameter of the thick cylinder increases, the internal deflection decreases and, in the limit, it approaches the value given by:
Comparison of both Folded Ammunition chamber sections with the cylinder equation shows that little can be gained by large increases in chamber outside diameter. The comparison is made by converting the Folded Ammunition to an area-equivalent cylinder and then calculating the limiting value of internal deflection of that thick cylinder. Results are summarized in Table II.

TABLE II.
Comparison of Internal Diameter Deflections

<table>
<thead>
<tr>
<th>Section</th>
<th>Finite Element Value</th>
<th>Limiting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-A</td>
<td>128×10^{-5} in.</td>
<td>104×10^{-5} in.</td>
</tr>
<tr>
<td>B-B</td>
<td>40.9×10^{-5} in.</td>
<td>34.4×10^{-5} in.</td>
</tr>
</tbody>
</table>

Ballistic Studies

Preliminary ballistic studies of the 5.56 mm Folded Ammunition were conducted in a heavy walled test weapon instrumented for measurement of chamber pressure. The weapon was designed to accept reusable cartridge cases which were assembled from several components allowing variation of internal volume and propellant charge distribution. The components of a representative case are shown in Figure 12. Propellant granulation and ignition studies were performed with this test hardware to establish the desired performance level. In addition, a parametric study was conducted to evaluate the effect on interior ballistics of the 5.56 mm Folded Ammunition of varying the relative locations of the primer and propellant charge. Also studied was the effect of throttling gas flow from propellant bed to projectile using flow areas of 1/3, 2/3 and full bore area. A special breech for the test weapon and special case bases were fabricated to permit firing with the primer located on the axis of the cylindrical portion of the case. Also fabricated were liners for the rear portion of the case which confine the propellant charge to the cylindrical portion and permit gas bleed-off through areas of 1/3 and 2/3 bore area. A representative liner is shown in Figure 13. The cross-sectional area of the gas bleed-off control slot is shown elevated for clarity.
The modified cases were fired in an instrumented test weapon with the following results. The standard case configuration and loading with primer positioned on the axis of the cylindrical portion produced no detectable effect on either pressure or velocity. When the 2/3 bore area liner was inserted and the entire propellant charge confined to the cylinder, average peak pressure increased by approximately 8 percent and muzzle velocity increased by approximately 2 percent. Using the same configuration as above but loading propellant in both the cylinder and throat produced a 20 percent increase in average peak pressure. Average velocity was the same as before but uniformity was substantially degraded. Using the 1/3 bore area liner and the propellant charge again confined to cylindrical area of the case, average peak pressure rose 10 percent while velocity decreased 10 percent. Here again, ballistic uniformity was poor.

It was concluded from these firings that locating the entire propellant charge in the cylindrical portion of the case in combination with an axially positioned primer can provide a small increase in performance. However, the magnitude of this increase is such that other considerations such as case manufacturing procedures, may render its adoption impractical or
cost-ineffective. It was also observed that restriction of gas flow from
the propellant charge to the projectile tends to decrease performance and
greatly degrades ballistic uniformity. However, this study was limited
to the 5.56 mm caliber, and, specifically, the FABRL bullet, which has
a comparatively low sectional density. More extensive studies will be
required to determine whether specific ballistic advantages can be
realized in other systems through variation of primer location, propellant position or gas bleed-off control.

Based on the preliminary ballistic studies in the test weapon and
results of the design analysis, a prototype cartridge was designed and
fabrication initiated. Concurrent with this, a test barrel was designed
and fabricated to accept this ammunition and permit firing from a universal
test fixture. This barrel, in addition to being instrumented for measure-
ment of chamber pressure, also permitted port pressure measurement to ob-
tain data required for automatic firing fixture operating mechanism design.
In order to obtain a pressure gradient, port pressure taps were provided
at the normal M16A1 position (6 1/2" from muzzle) and at a position three
inches closer to the bolt face.

Test firings were conducted with pressure gages at the chamber and
both port positions. Results of these tests indicated a pressure at the
normal port position of 9000 psi for rounds fired at the desired perfor-
maance level. This translates into a bolt cavity pressure of approximately 750
psi. Since the M16A1 normally operates at a bolt cavity pressure of 1600
to 2400 psi, a relocation of the pressure port was indicated. Figure 14
is a graph of bolt cavity pressure versus port position calculated from
the pressures measured in these test firings. From this curve, a new
port position was selected for the automatic Folded Ammunition firing
fixture. This position is four inches to the rear of the original in
order to produce an estimated average bolt cavity pressure of 1800 psi.

Interior ballistic studies in both the above test weapon and eventually
in the automatic test fixtures resulted in selection of a propellant charge
for the 5.56 mm folded FABRL cartridge that yields velocity and pressure
levels comparable to those obtained with the conventional design. The
data shown in Figure 15 compares interior ballistics of the conventional
and folded designs using the same 5.56 mm FABRL bullet, 18 grains of
propellant WC 680 and the standard FA 41 primer. These curves are derived
from a series of test firings and are representative of these firings.
Performance levels are statistically similar as are calculated efficiencies.
The Folded Ammunition time-pressure curves showed no evidence of unusual
spikes, pressure waves or ignition anomalies. Representative firing data
are shown in Appendix B.

The conclusion can be drawn that the folded design does not appear to
introduce any negative effects on ignition or propellant combustion. There
has been some indication in limited studies of a 30 mm system that in the
heavier, larger caliber projectiles improved ballistic efficiencies can
be achieved with the Folded Ammunition design. Studies are being continued
in the 30 mm experimental test fixtures to ascertain the validity of this
preliminary evidence.
Figure 14. Bolt Cavity Pressure vs Gas Port Position
CONVENTIONAL DESIGN

<table>
<thead>
<tr>
<th>TIME (MS)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE (Kpa)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

FOLDED DESIGN

<table>
<thead>
<tr>
<th>TIME (MS)</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE (Kpa)</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

BULLET WT 37.1 GR

PROPELLANT 18 GR WC 680

PEAK PRESS. 46125 PSI

VELOCITY 3224 FT/SEC

BALLISTIC EFF. (μ_b) 0.337

PIEZOMETRIC EFF. (μ_p) 0.308

Figure 15. Interior Ballistics Comparison
Case Fabrication

Due to the unusual shape of a folded cartridge case, the ability to produce this case at a rate and cost comparable to those of a conventional case was a matter for serious concern in this feasibility study. Therefore, the establishment of a case fabrication process, that would indicate a high degree of case producibility, was considered an essential aspect in demonstrating the feasibility of Folded Ammunition.

Three decisions had to be made at the outset of this feasibility study with respect to the number of case components, the forming technique and the case material. A two-piece case was selected in lieu of either a one-piece or a three-piece case. The one-piece case was considered too difficult to mass produce while the three-piece, although easier to fabricate, was deemed too complex to meet the stringent requirements of a cartridge case. The forming technique chosen was an impact extrusion process (Figure 16) as the first approach in fabricating the unusually-shaped, two-piece folded case. For comparison, the standard blank cup and draw process used for fabricating the one-piece 5.56 mm bottleneck case, is shown in Figure 17. As can be seen, case processing steps have been reduced from 14 for the conventional to 8 for the folded. Of course, machine production rates must be taken into consideration as part of any comparative procedure, among other things, but the impact extrusion process used here enables a reduction in process steps when compared to conventional case fabrication. On the other hand, the folded case was fabricated in two parts and this then increased the number of fabrication steps for the total case. Even so, a decision was made and carried through which resulted in a practical experimental method for case fabrication. Steel was selected as the folded cartridge case material for its cost-savings potential since it is approximately 40 percent of the cost of brass, the material from which standard cases are made. Aluminum and plastics were considered as material candidates but were ruled out at this time although they could be considered as possible candidates in the future.

Having made these three crucial decisions, it remained to develop specific tooling and processing operations to fabricate the experimental Folded Ammunition cases. The tool drawings for the extrusion process for the 5.56 mm folded cartridge case are shown in Appendix B. Although many problems surfaced during this development, one of the major hurdles centered around extruding a steel with a high enough carbon content to achieve what were considered to be desired case mechanical properties (approximately 164 kpsi yield strength) through heat treatment. The lowest carbon steel which can be heat treated to the desired level is 1035, a steel which is not suitable for impact extruding at the degree of reduction required for the process. Thus, an investigation was conducted to develop a means for circumventing this problem. The approach taken utilized a carburizing technique which would be
Figure 17. Blank, Cup, and Draw Process for Standard Ammunition
workable on a thin-walled structure such as the folded cartridge case. The case, therefore, was extruded from 1008 steel (the lowest carbon steel (commercially available and extrudable at the required degree of reduction), carburized to 1035 steel and then heat treated to the desired property levels. Figure 18 shows the uniformity or homogenity of such carburized microstructure and Table III lists the hardness readings obtained on the heat-treated carburized cases.

TABLE III.
Hardness Readings of Heat-Treated Carburized Cases

<table>
<thead>
<tr>
<th>Reading Position</th>
<th>Hardness - Rc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>34</td>
</tr>
</tbody>
</table>

It was found in subsequent testing that the carburized and heat treated cases were not sufficiently ductile to preclude splitting during test firings. In fact, it was found that uncarburized 1008 steel cases did possess sufficient ductility wherein the as-formed case could be successfully fired without splitting. This advantageous situation resulted in a significant simplification of the case process and it was found that satisfactory case ejection could be obtained in automatic test firing fixtures. The hardness pattern for this case is shown in Table IV. The final case process, then, is that shown in Figure 19.

Loading and assembly of the experimental Folded Ammunition was accomplished in the manner depicted in Figure 20. The process consisted of inserting the projectile in the case to form a closed case body into which the propellant was loaded. The cap was primed separately and then joined to the loaded case body. Although this differs from the conventional cartridge assembly, these steps should be amenable to production processing. Shown in Figure 21 in both external and cutaway views is the assembled 5.56 mm folded cartridge used in this feasibility study. Details of cartridge and components are contained in Appendix C.
Case 1

Location A

Case 2

Location B

Location C

NOTE: Overall Carbon Content: 0.32%

Figure 18. Carburized Microstructure for Folded Cartridge Case
Figure 19. Final Extrusion Process for Folded Cartridge Case
Hardness Readings of Heat-Treated Uncarburized Cases

<table>
<thead>
<tr>
<th>Reading Position</th>
<th>Hardness - Re</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 1</td>
</tr>
<tr>
<td>1</td>
<td>B61</td>
</tr>
<tr>
<td>2</td>
<td>368</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>B59</td>
</tr>
</tbody>
</table>

B - Rockwell "B" readings given where too low to read on "C" scale

Figure 21. Assembled 5.56 mm Folded Cartridge
Automatic Firing Test Fixtures

The ability to feed a two-pronged folded cartridge on an automatic basis posed a question that could only be answered by actual experimentation. In the interest of minimizing cost and taking maximum advantage of existing hardware, automatic test fixtures were evolved through modification of standard weapons. Two weapons, the M16A1 and a Belgian Light Automatic rifle were chosen to provide latitude to pursue different design approaches based upon two significantly different operating mechanisms. In each case, the weapon was fitted with a 5.56 mm barrel chambered for the folded 5.56 mm FABRL cartridge. Magazines were designed for feeding the Folded Ammunition and appropriate modifications were made to the bolt and bolt carrier to provide the proper feed and mating with the folded design chamber. In order to make use of the highly desirable front end case ejection advantages of the folded system approach, ejector systems were fitted to the weapons and gas operating systems modified to provide satisfactory cartridge case removal. The modified weapons are shown in Figure 22. Details of the new and modified parts for both weapons are contained in Appendixes D and E.

Firing tests were conducted in both weapons to provide empirical data for refinement of operating mechanisms design resulting in evolution of fixtures which satisfactorily demonstrated that Folded Ammunition could be automatically fed, fired and ejected. Figure 23 shows a firing sequence representing a six-round burst from the modified M16A1 test fixture at a cyclic rate of 706 s.p.m.

The firing cycle shown starts with the bolt in battery with a round in the chamber. Propellant gas from the first round fired pressurizes the bolt carrier. Then in proper sequence, the bolt unlocks and the expeller lever engages the expeller shaft pushing the fired case out of the chamber. As the bolt continues rearward, it permits the next round to enter from the magazine which is located horizontally on the other side of the weapon. This round pushes the fired case from the bolt face and into the ejection port as it moves into position for chambering. The return stroke of the bolt completes the ejection of the fired case and chambers the next round completing the cycle.
Figure 23 a. Modified M61A1 Firing Sequence
CONCLUSIONS AND RECOMMENDATIONS

The feasibility of the folded ammunition/weapon system has been demonstrated by automatic test firing of experimental prototype ammunition in automatic firing fixtures. Pertinent technology has been established in areas that are essential to the success of this new design approach. These include: first, capability to match ballistic performance of conventional ammunition. Secondly, utilization of a two-piece case which performed satisfactorily in the firing test. Thirdly, the ammunition was fabricated using state-of-the-art impact extrusion machinery. Finally, it was shown that the folded shape ammunition could be automatically fed, fired and ejected with indications that this would not offer a stumbling block in the development of systems using this principle.

As a result of the success experienced in the testing of experimental folded system hardware and the real promise of future system optimization as indicated by the advantages outlined in the introduction to this report, it is recommended that the conceptual phase of exploratory development be completed to provide combat development agencies with hardware oriented data to determine operational capabilities, doctrine and specific material requirements that will provide Army, and very possibly Tri-Service forces with the improved capabilities that can accrue from the folded system design principle. We recommend that the following approach be taken to achieve this goal.

It is felt that the most cost effective program would be to develop required hardware oriented data using small caliber as the test vehicle. In the small caliber test vehicle the common cartridge, common fed rifle and light machine gun approach would not only supply basic data but would be very advantageous in its applicability to the future small arms program. The utility of one common ammunition package unit suitable for use in the rifle or light machine gun would be joined to the most advanced projectile design. In addition to the general information that would be gleaned from a small caliber program, specific parametric studies should also be conducted in both cannon and large caliber to provide the widest spectrum of information.
AMMUNITION AND WEAPON SYSTEMS

Inventor: Andrew J. Grandy, 2707 Grant Ave., North Hills, Pa. 19038

Filed: Mar. 30, 1972
App. No.: 239,595

U.S. Cl. 102/38, 102/40, 102/43
Int. Cl. F42b 5/02
Field of Search 102/38, 40, 43, 43 P, 44, 89/35, 35 A, 33

References Cited
UNITED STATES PATENTS

751,519 2/1964 Kilzer 102/40
949,965 2/1910 Dunn 102/38
1,659,625 2/1928 Cowan 102/43 R
2,222,812 11/1940 Faulkner 89/35 A
2,535,624 12/1950 Burney 102/38
2,866,412 12/1958 Meyer et al. 103/40 X
2,969,031 11/1960 Cliff 102/40
3,046,842 7/1962 Sergay 89/35 A
3,046,800 7/1962 Dardick 102/38
3,283,719 11/1966 Grandy 102/40

FOREIGN PATENTS OR APPLICATIONS
1,537,857 8/1968 France 102/38

ABSTRACT

A weapon system employing encapsulated ammunition in which the pressure chamber, located axially rearward of the projectile, is longitudinally or axially offset from but in fluid communication with the propellant capsule chamber. This permits use of ammunition rounds having reduced length for given characteristics of prior rounds, resulting in lightest weight and improved bulk characteristics for the ammunition as well as associated weapon systems.

This ammunition concept is adaptable to recoilless, partially recoilless and closed breech ballistic systems in a variety of arrangements.

102 Claims, 67 Drawing Figures
AMMUNITION AND WEAPON SYSTEMS

The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.

This invention relates to ammunition and weapon systems therefor, and more particularly to a variety of such systems each having the capacity to utilize cartridge capsule ammunition.

Present day cylindrical ammunition does not represent the most efficient, overall cartridge with respect to bulk and weight.

It is an object of the invention to provide weapon arrangements and cartridge capsule ammunition rounds for use therewith which are of lightness in weight and have improved bulk characteristics.

Another object of the invention is to provide such ammunition and weapon arrangements that can be advantageously used as partially recoilless, fully recoilless or closed breech ballistic systems.

A further object of the invention is to provide such arrangements that can be advantageously used in either fixed projectile or bolt rammed projectile systems.

A further object of the invention is to provide such arrangements that facilitate an improved manner of removing spent ammunition rounds from the firing chamber of the weapon.

A still further object of the invention is to provide means for attaching the cartridges in arrangements that can be advantageously used in single shot, semi-automatic and fully automatic weapons.

Another object of the invention is to provide specific capsule cartridge shapes resulting in efficient packaging arrangements which can be advantageously used in rotary fed and in-line fed single shot, semi-automatic and fully automatic weapons.

A further object of the invention is to provide both individual capsule cartridges and multi-cavity, unitized cartridge arrangements which can be advantageously used in rotary fed and in-line fed single shot, semi-automatic and fully automatic weapons.

These and other objects, features and advantages will become apparent from the following description and accompanying drawings in which:

FIGS. 1-4 are perspective views of a variety of ammunition rounds embodying the principles of the invention.

FIG. 5 is a longitudinal sectional view of the FIG. 1 round.

FIG. 6 is a longitudinal sectional view of a portion of a closed breech weapon system for the FIG. 5 round.

FIG. 7 is a sectional view taken substantially along lines 7-7 of FIG. 6.

FIG. 8 is an exploded view of certain portions of the FIG. 6 arrangement subsequent to firing.

FIGS. 9-13 are views, similar to FIGS. 1-5, of a modified group of ammunition rounds.

FIG. 14 is a longitudinal sectional view of a portion of a recoilless or partially recoilless weapon system for the FIGS. 9-13 rounds.

FIGS. 15-19 are similar views of a modified group of ammunition rounds.

FIGS. 20 and 21 are longitudinal sectional views of modified portions of weapon systems associated with the round of FIGS. 15-19.

FIGS. 22-26 are views, similar to FIGS. 15-19, of a modified group of ammunition rounds.

FIGS. 27 and 28 are longitudinal sectional views of modified portions of weapon systems associated with the rounds of FIGS. 22-26.

FIGS. 29-32 are perspective views of a further modified group of rounds.

FIGS. 33 and 34 are perspective views of clusters of capsules of the FIG. 30 and FIG. 32 rounds, respectively.

FIGS. 35 and 36 are perspective views of clusters of capsules of the FIG. 32 and FIG. 31 rounds, respectively.

FIG. 37 is an end view of a modified form of cluster arrangement.

FIG. 38 is a sectional view taken along line 38-38 of FIG. 37.

FIG. 39 is a perspective view of a modified cluster arrangement.

FIG. 40 is an exploded perspective view of a linking clip member and ammunition round used in the FIG. 39 arrangement.

FIGS. 41-44 are end views of integral multiple cavity containers of cartridge capsule portions arranged in cylindrical form.

FIG. 45 is a sectional view taken along line 45-45 of FIG. 41.

FIG. 46 is a longitudinal sectional view of a portion of a closed breech weapon system for the FIGS. 41-44 ammunition.

FIG. 47 is a longitudinal sectional view, partially broken away, of multi-cavity container modifications for the FIGS. 41-44 cylinders.

FIG. 48 is a longitudinal sectional view of a portion of a recoilless or partially recoilless weapon system for the FIG. 47 ammunition containers.

FIG. 49 is a view, similar to FIG. 47, of further multi-cavity container modifications for the FIGS. 41-44 ammunition cylinders.

FIGS. 50 and 51 are longitudinal section views of modified portions of weapon systems associated with the FIG. 49 ammunition containers.

FIG. 52 is a view, similar to FIG. 49, of further multi-cavity container modifications for the FIGS. 41-44 ammunition cylinders, and FIG. 52A is a partial sectional view taken along line 52A-52A of FIG. 52.

FIGS. 53 and 54 are longitudinal sectional views of modified portions of weapon systems associated with the FIG. 52 ammunition containers.

FIG. 55 is a longitudinal sectional view of a propellant capsule portion of a multi-cavity rectangular prism ammunition cluster.

FIG. 56 is a partial sectional view taken along line 56-56 of FIG. 55.

FIG. 57 is a sectional view taken along line 57-57 of FIG. 56.

FIG. 58 is a longitudinal sectional view of a portion of a closed breech weapon system for the FIG. 55 ammunition prisms.

FIGS. 59-61 are views similar to FIG. 55 of modified arrangements.

FIG. 62 is a longitudinal sectional view of a portion of a recoilless or partially recoilless weapon system for the FIG. 59 ammunition prisms.

FIGS. 63 and 64 are longitudinal sectional views of modified portions of weapon systems associated with the FIG. 60 ammunition prisms.
FIGS. 65 and 66 are longitudinal sectional views of modified portions of weapon systems associated with the FIG. 61 ammunition prisms.

The FIG. 1 encapsulated ammunition round shown generally at 101 includes a thin capsule 102 (FIG. 5) of ferrous, non-ferrous or synthetic material of predetermined contour. Preferably ferrous, the cartridge capsule has an elongated substantially cylindrical chamber 103 and a propellant chamber 104 integral therewith but longitudinally offset therefrom. An intermediate necked down metering surface 105 interconnects or fluidly communicates the propellant chamber 104 with the pressure chamber portion 106 of the cylindrical chamber 103. A projectile 107 is slidably received in the forward barrel portion 108 of chamber 103 in longitudinal alignment with the pressure chamber portion 106. An appropriate percussion primer 109 is secured in a suitably recessed and acceptor rear wall portion of the capsule 102, preferably aligned with the propellant chamber 104 which contains the desired granular, flake, sheet or solid grain propellant 110. The transverse sections and end walls 111 of the FIG. 1 round propellant chamber are of substantially rectangular configuration. The embodiments of FIGS. 2, 3, and 4 are of substantially the same construction as the FIG. 1 round, but the transverse sections and corresponding end walls 112, 113, and 114 are of configurations which are substantially square, triangular, and cylindrical, respectively.

The portion of the closed breech weapon system (FIGS. 5-8) includes a substantially cylindrical barrel 120, having an axially offset capsule chamber 121 integral therewith, both the barrel and capsule chamber having a somewhat shortened common wall portion 122 to accommodate the FIG. 1 round prior to firing (FIG. 6) which function is accomplished after the barrel lug 123 and capsule chamber lug 124 are simultaneously engaged by the oppositely hooked or locking lugs 125, 126 of the rotatable and longitudinally translatable breech means or bolts 127. The closed breech type bolt 127 has a firing pin 128, biased by spring 129 surrounding the firing pin rod or stem 130, with its receptive opening 131 in operative alignment with the pin of the round to be fired. The barrel 120 has a transverse opening 120A and an appropriate conduit 120C to direct gas energy for further weapon operation. An ejection rod 134 is slidably mounted in an apartment forward wall 135 of capsule chamber 121 to rearwardly eject a fired or undesired round when the bolt 127 has been rotated out of locking engagement and translated rearward (FIG. 8). The chamber wall 135 is internally recessed to normal seat the ejection rod head 136. The capsule chamber 121 has a cross-section of substantially rectangular configuration to receive the propellant capsule portion of the FIG. 1 round. For firing of the FIGS. 2, 3, or 4 rounds, this chambering of the projectile as the longitudinally translatable bolt 127A (FIG. 14) of the rearwardly enlarging tapered recoil vent 127C provided in the breech or bolt 127. The forward internal surface of the nozzle 127A is formed with a substantially sharp annular edge to facilitate positive shearing action upon the operative portion of the weakened section 103C when sufficient propellant pressure is generated in the pressure chamber portion of cylindrical chamber 103 by the ignited propellant 110.

The ammunition rounds of FIGS. 15-19 contain several variations for their respective firings in the fixed projectile, inset bolt weapon systems of FIGS. 20 and 21. The capsule cylindrical chamber 203 has an open rearward end 206A adjacent its pressure chamber portion 206, and contains a bottom gas vent 203A which is substantially in vertical alignment with the blow out disc or pre-formed weakened section 204A defined by internal recess 204C in the upper wall of capsule propellant chamber 204. A suitable primer 209 is located in the rearward wall of the propellant chamber which is integrally connected with chamber 203 by the forwardly opening cavity side and rearward walls 205.

In both the FIG. 20 closed breech and FIG. 21 recoilless or partially recoilless weapon systems the common wall portion 222, for the cylindrical barrel 220 and axially offset capsule chamber 221, terminates with a rearwardly extending tongue 222A that fits into the connecting cavity and abuts the cavity rear wall 205 upon loading of the round. Tongue 222A has a vertical gas vent passage 222C that places capsule chambers 203 and 204 in fluid communication upon firing of the round as the developed pressure gas blows out a portion of the weakened section 204A at the sharp edged passage 222C and enters the pressure chamber 206 adjacent the concave recess 227F provided in the forward face of the reduced tip portion 227G on the bolt 227B. The bolt 227B is longitudinally translatable in the rotational and longitudinally translatable breech member 227. With bolt lug or pin 227H slidable in longitudinal slot 227F of member 227, the bolt is withdrawn rearwardly prior to operative disengagement and engagement of the breech hooking or locking lugs 225, 226 with the barrel lug 223 and capsule chamber lug 224. A recoilless or partially recoilless weapon nozzle 227A (FIG. 21) is provided in bolt 227B at the juncture of the rearwardly enlarging tapered recoil vent 227C and the concave recess 227E.

The ammunition rounds of FIGS. 22-26 are distinguished from the FIGS. 15-19 rounds in that the upper portion of the capsule cylindrical chamber 203 has a lengthwise split or slotted wall 203C. A plurality of camming or dimple means 203E are provided on the internal surface of the pressure chamber portion 206 adjacent the slotted wall 203C and just rearward of projectile 107. This will facilitate the release and barrel chambering of the projectile as the longitudinally translatable bolt 250 (FIGS. 27 and 28) cams the dimple means 203E to spread the inwardly directed substantially annular flange 240 and pushes the projectile to its final pre-firing position in barrel 260. Cylindrical barrel 260 differs from barrel 230 in that an additional intermediate internal recessed surface 261 is provided rearwardly adjacent the rifling 262 to accommodate the forwardmost portion of bolt 250 in its firing position, while a further recessed surface 263 accommodates the spread portions of split chamber wall 203. The longitudinal slot 271 of the rotational an longitudinally trans-
latable breech member 270 is substantially longer than slot 227F, such that the lug or pin 227H on bolt 250 can be accommodated for its intended full stroke. The forward end of bolt 250 has a forwardly opening nozzle surface 253 that intersects with a concave recess 254 provided on the underside of the bolt, so that the pressure chamber portion 206 fluidly communicates gas vent passage 222C with the rearward end of projectile 107 in both the FIG. 27 closed breech and FIG. 28 recoilless or partially recoilless weapon systems. The rearwardly enlarging tapered recoil vent 256 (FIG. 28) in bolt 250 intersects concave recess 254 at the effective recoilless nozzle throat 257.

The ammunition rounds of FIGS. 29-32 are each provided with a longitudinally extending groove 104L of dovetail transverse configuration along the length of an opposed longitudinally extending wall portion. Where each substantially similar round has its corresponding tongue and groove surfaces 104M, 104L, extending in parallel planes, successive similar cartridge capsules can be integrally linked or connected (FIGS. 33, 34) in a substantially straight line cluster pattern. The corresponding dovetailed tongue and groove surfaces of similar rounds can also be formed or oriented in non-parallel planes such that successive similar capsules can be integrally linked or mattingly joined to form an arcuate or circular cluster pattern or array (FIGS. 35, 36). Each cluster may be held in an appropriate feeding and stripping mechanism (not shown) which will enable the corresponding breech member to longitudinally translate each stripped round into its weapon position prior to rotational locking motion of the breech member. It is contemplated that each of the previously described rounds (FIGS. 5, 13, 19, and 26) may be so dovetailed for integral linking or connecting purposes, and each fired in their respective weapons which can be slightly altered to accommodate the protruding rib or tongue. The breech locking arrangement on each of the respective weapons also can be relocated to a position somewhat rearward to enable the forward portion of the bolt to have a cross-sectional shape similar or identical to that of the particular cartridge to be chambered.

A modified cluster arrangement (FIG. 37) includes an annular linking member 300 of substantially rearwardly opening U-shaped configuration (FIG. 38) having a plurality of equally spaced arcuate or concave recesses 301 along its peripheral or outermost surface 302 to accommodate an arcuate undersurface portion of the capsule cylindrical chamber 203 on the FIG. 17 ammunition rounds. The rounds are slid forward onto the metal link ring 300 at each recessed surface 301 such that the ring cradles each round at the rearmost clearance between its propellant chamber 204 and projectile 107 or its supporting cylinder 203. It is contemplated that the ring 300 be formed to cluster similar rounds from any of the groups associated with FIGS. 5, 13, 19, or 26 and that the cluster can be suitably mounted and indexed on weapon system cylindrical stubs of the type to be later described with unitary and radially arranged ammunition containers or clusters.

The modified cluster arrangement (FIG. 39) employs a plurality of individual clip members 320 (FIG. 40) which are shown to be joined or linked by insertion of respective FIG. 1 capsule cartridges 101 into selected substantially C-shaped or clip portions of adjacent clips 320. Each link member 320 is formed from a pre-slotted blank or metal member and contains a substantially straight integral or common portion and upper and lower groups of alternately disposed loop portions 321A, 322A, 321A, 322A. The upper loops are formed to enable simultaneous reception of the cartridge capsule cylindrical chamber 103 and projectile 107 by longitudinally spaced loops 323, 321 of one link and intermediate loop 322 of an adjacent link, while the substantially rectangular propellant capsule portion 104 is clipped or received by respective loop portions 323A, 321A of the one link and middle loop 322A of the adjacent link. The substantially straight line type of cluster (FIG. 39) so formed can be used in the same manner as the unitary rectangular ammunition containers or clusters to be later described. Clip members 320 can also cluster separate groups of cartridges of FIGS. 9, 15, 22. The width of the straight common portion of the C shaped clip portions can be reduced such that similar clips can cluster separate groups of cartridges of FIGS. 2, 10, 16, 23 as well as FIGS. 4, 12, 18, 25. The clipping or clustering of separate groups of cartridges of FIGS. 3, 11, 17, 24 can be accomplished where the pre-formed slits of the clip blank are of sufficient length that the lower loops can be bent or inclined to facilitate insertion of the rounds.

The integral or unitary multiple cavity containers 400A, 400B, 400C, 400D (FIGS. 41-44) are preferably made of ferrous, non-ferrous or synthetic material in cylindrical form to contain a cluster of cartridge capsule portions similar to the respective ammunition rounds of FIGS. 1-4. The annular container 400 having a central cylindrical opening 401 (FIGS. 41, 45) and includes a plurality of circumferentially spaced cavities that are defined by integral cartridge capsule portions 402 each having a cylindrical chamber 403 and longitudinally offset propellant chamber 404 which is interconnected by metering orifice 405 at the rearmost edge of separating wall 405A. Orifice 405 fluidly communicates the propellant chamber 404 with the pressure chamber portion 406 of chamber 403 whose forward chamber portion 408 slidably receives projectile 107. A suitable primer 409 is secured in an appropriately recessed and apertured rear wall portion of each cartridge capsule portion 402, preferably aligned with propellant chamber 404 that contains the desired propellant 110. An appropriate substantially annular ring shaped end wall closure 411 is suitably secured with cement or the like to seal the forward end of each propellant chamber 404 having a rectangular transverse configuration. Containers 400B, 400C, and 400D will require similar ring end wall closures that suitably seal their respective propellant chambers of substantially square, triangular and cylindrical configurations.

The central opening 401 of each annular container 400A, 400B, 400C, 400D, is slidingly received on the cylindrical stub 420A (FIG. 46) that extends rearwardly from the weapon housing 420B and parallel to but substantially offset or below the barrel 420 of the closed breech weapon system for the FIGS. 41-44 cylindrical capsule containers or clusters. Preferably, stub 420A has a tapered rearward end and is centrally located within the rearwardly opening weapon housing armament well 421 to facilitate the reception of the cylindrical or annular containers that can be delivered by
the longitudinally translatable breech means or bolt 427 prior to rotation of the breech to simultaneously secure the opposed hook or locking lugs 425, 426 in engagement with the weapons housing lugs 423, 424. After each successive cartridge capsule portion is suitably moved to a firing position by means not shown, actuation of spring 429 surrounding the rod or stem 430 of firing pin 428 will initiate the aligned primer 409 to fire the round. When all of the rounds in the cluster or container have been fired, bolt 427 is rotated out of locking engagement and translated rearward to permit the spent container to be replaced by another multi capsule cluster or container.

The multi-cavity ammunition containers of FIG. 47 are distinguished from the FIG. 48 ammunition cylinders in that the rearward walls of each cartridge capsule portion 402 have a blow out disc or pre-formed weakened section 403C as defined by internal recess 403F adjacent the pressure chamber portion 406. Each recess 403F operatively aligns with the recoilless or partially recoilless weapon sharp edged nozzle 427A (FIG. 48) of the rearwardly enlarging tapered recoil vent 427C provided in the breech or bolt 427. The ammunition containers of FIG. 49, that are fired in the fixed projectile, inserted bolt weapon systems of FIGS. 50 and 51, are distinguished from the FIG. 45 cylindrical clusters in that each cartridge capsule portion 402 has its cylindrical chamber 403 defined by a through bore to provide an open rearward end 406A adjacent its pressure chamber portion 406 for reception of reduced tip portion 427G (FIGS. 50, 51) on the forward end of the bolt 427B that is longitudinally translatable in the rotational and longitudinally translatable breech member 427. Preferably, a rearward upper wall portion of each capsule propellant chamber 404 is internally recessed at 404C to provide a pre-formed weakened section or blow-out disc 404A in the full common wall that separates cavities 403 and 404. When each primer 409 is actuated or initiated, developed pressure gas blows out the weakened section or disc 404A and enters pressure chamber 406 adjacent the concave recess 427E provided in the forward face of bolt tip 427G. With bolt pin 427H slidably in longitudinal slot 427F of member 427, the bolt is withdrawn substantially simultaneously with indexing of the associated ammunition cylinder by means not shown, and when a replacement ammunition cylinder is required, bolt withdrawal is followed by operative disengagement and engagement of the breech or locking lugs 425, 426 with the weapon housing lugs 423, 424. A recoilless or partially recoilless weapon nozzle 427A (FIG. 51) is provided in bolt 427B at the juncture of the rearwardly enlarging tapered recoil vent 427C and the concave recess 427E. The multi-cavity ammunition containers of FIG. 52 are distinguished from the FIG. 47 ammunition cylinders in that each cartridge capsule portion 402 has the upper portion of its cylindrical chamber 403 provided with a lengthwise split or slotted wall 403S (FIGS. 52, 52A). A plurality of camming or dimple means 403T are provided on the internal surface of each pressure chamber portion 406 adjacent the slotted wall 403S just rearward of each projectile 107. This facilitates the release and barrel chambering of the projectile as the longitudinally translatable bolt 450 (FIGS. 53 and 54) cams the dimple means 403T to spread the slotted wall and pushes the projectile to its final pre-firing position in barrel 420. The internal surface of the housing annular wall 421 is of appropriate dimensions that sufficient clearance is provided for lateral spreading of the split cylindrical chambers 403 during the projectile barrel chambering operations. The longitudinal slot 471 of the rotational and longitudinally translatable breech member 470 is substantially longer than slot 427F (FIGS. 50, 51). Such that the pin 427H on bolt 450 can be accommodated for the intended full stroke of the bolt. The forward end of bolt 450 has a forwardly opening nozzle surface 453 that intersects with a concave recess 454 provided on the underside of the bolt so that each pressure chamber portion 406 fluidly communicates developed pressure gas from the respective propellant chamber 404 with the rearward end of the corresponding projectile 107 during operation of both the FIG. 53 closed breech and FIG. 54 recoilless or partially recoilless weapon systems. The rearwardly enlarging tapered recoil vent 456 (FIG. 54) in bolt 450 intersects concave recess 454 at the effective recoilless nozzle throat 457.

The unitary or integral multiple cavity ammunition cluster 500 (FIGS. 55-57) is a rectangular prism which is made of materials similar to the aforementioned multi-cavity cylindrical ammunition containers and includes a plurality or cluster of cartridge capsule portions 502 that are integrally arranged in laterally spaced positions across the prism as it is successively moved or fed transversely through the firing chamber 501 (FIG. 58) of a closed breech weapon system having an integral arrangement for the closed breech on bolt and barrel portions 527 and 520, respectively. Each cartridge capsule portion 502 is very similar to the cartridge capsule portions 402 of the FIG. 45 ammunition cylinder. Preferably, a rectangular shaped or elongated cover 511 is cemented to an appropriate receptacle therefore for extending across the forwardmost portions of the successively arranged propellant chambers 404. While each of the propellant cavities 404 in the FIG. 55 elongated ammunition prism has been formed with a transverse section of substantially rectangular configuration, the propellant cavities 404 of the rectangular prism may also be of substantially square, triangular and cylindrical configuration, and the end wall closure or seal 511 would not require modification.

The type of multi-cavity ammunition prism 500A (FIG. 59) are distinguished from the FIG. 55 ammunition prisms 500 in that the rearward walls of each cartridge capsule portion 502 for each of the prisms is provided with a blow out disc or a pre-formed weakened section 503C as defined by internal recess 503E adjacent the pressure chamber portion 406. Each recess 503E operatively aligns with the recoilless or partially recoilless weapon sharp edged nozzle 527A (FIG. 62) of the rearwardly enlarging tapered recoil vent 527C provided in the bolt portion 527.

The type of ammunition prism 500B (FIG. 60), that are fired in the fixed projectile, inserted bolt weapon systems of FIGS. 63 and 64, are distinguished from the FIG. 55 ammunition prisms 500 in that each cartridge capsule portion 502 has its cylindrical chamber 403 defined by a through bore to provide an open rearward end 406A adjacent its pressure chamber portion 406 for reception of reduced tip portion 537C (FIGS. 63, 64) on the forward end of the bolt 527B that is longitudinally translatable in breech portion 527. A rearward
upper wall portion of each capsule propellant chamber 404 is internally recessed at 404C to provide a pre-formed weakened section or disc 404A in the full common wall that separates cavities 403 and 404. When each primer 409 is actuated or initiated, developed pressure gas blows out the weakened section or disc 404A and enters pressure chamber 406 adjacent the concave recess 527F provided in the forward face of bolt tip 527G. An appropriate pin and slot connection (not shown) between bolt 527B and breech portion 527 enables the bolt to be withdrawn substantially simultaneously with indexing or feeding of the associated ammunition prism through chamber 501 by means not shown. Bolt 527B is also withdrawn when a replacement ammunition prism is required. A recoilless or partially recoilless weapon muzzle 527A (FIG. 64) is provided in bolt 527B at the juncture of the rearwardly enlarging tapered recess vent 527F and the concave recess 527E.

The type of ammunition prism 500C (FIG. 61) are distinguished from the FIG. 60 ammunition prisms in that each cartridge capsule portion 502 has the upper portion of its cylindrical chamber 403 provided with a lengthwise split or slotted wall 403S and a plurality of camming or dimple means 403T are provided on the internal surface of each pressure chamber portion 406 adjacent the slotted wall 403S just rearward of each projectile 107. This facilitates the release and barrel chambering of the projectile as the longitudinally translatable bolt 550 (FIGS. 65 and 66) cams the dimple means 403T to spread the slotted wall and pushes the projectile to its final firing position in barrel 520. The internal upper surface of the firing chamber 501 is suitably dimensioned that sufficient clearance is provided for spreading of the slotted walls. A suitable pin and substantially long slot connection (not shown) between bolt 550 and breech portion 527 will enable full longitudinal motion of the bolt 550 throughout its intended full stroke. The forward end of bolt 550 has a forwardly opening muzzle surface 553 that intersects with a concave recess 554 provided on the underside of the bolt so that each pressure chamber portion 406 fluidly communicates developed pressure gas from the respective propellant chamber 404 with the rearward end of the corresponding projectile 107 during operation of both the FIG. 65 closed breech and FIG. 66 recoilless or partially recoilless weapon systems. The rearwardly enlarging tapered recess vent 556 (FIG. 66) in bolt 550 intersects concave recess 554 at the effective recoilless muzzle throat 557.

Various modifications, changes, and alterations may be resorted to without departing from the scope of the invention as defined by the appended claims.

1. An ammunition capsule comprising,
a unitary capsule body having an elongated longitudinally extending cylindrical chamber, said chamber having a forward barrel portion for slidably receiving a projectile and a pressure chamber portion inward with and rearward of said barrel portion, a one-piece imperforate propellant capsule chamber which remains imperforate and is integral with and laterally offset from said elongated chamber, and propellant capsule chamber having metering orifice means for fluidly communicating the propellant capsule chamber with said pressure chamber, and

a primer carried by an exterior surface of said ammunition capsule body for igniting a capsule propellant charge.

2. The structure in accordance with claim 1 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

3. The structure in accordance with claim 2 wherein said transverse section is of substantially square configuration.

4. The structure in accordance with claim 1 wherein said propellant chamber has a transverse section of substantially triangular configuration.

5. The structure in accordance with claim 1 wherein said propellant capsule has opposed longitudinally extending external wall portions, one of said wall portions having a longitudinally extending groove and the other wall portion having a tongue protuberance of a substantially similar configuration as said groove.

6. The structure of claim 5 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

7. The structure of claim 6 wherein said transverse section is of substantially square configuration.

8. The structure of claim 5 wherein said propellant chamber has a transverse section of substantially triangular configuration.

9. The structure of claim 5 wherein said groove extends to the rearward edge of said capsule.

10. The structure of claim 5 wherein said propellant chamber has a transverse section of polygonal configuration.

11. The structure of claim 5 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

12. The structure of claim 5 wherein said pressure chamber has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

13. The structure in accordance with claim 12 wherein said propellant chamber has a transverse section of polygonal configuration.

14. The structure in accordance with claim 5 wherein a rearward wall of said pressure chamber portion has a pre-formed weakened section for use with a recoil vent in breech means of a recoilless system.

15. The structure of claim 14 wherein said propellant chamber has a transverse section of polygonal configuration.

16. The structure of claim 15 wherein said transverse section is of substantially triangular configuration.

17. The structure in accordance with claim 15 wherein said transverse section is of substantially rectangular configuration.

18. The structure of claim 17 wherein said transverse section is of substantially square configuration.

19. The structure of claim 14 wherein said propellant chamber has a transverse section of polygonal configuration.

20. The structure in accordance with claim 1 wherein said propellant chamber has a transverse section of polygonal configuration.

21. The structure in accordance with claim 20 wherein a rearward wall of said pressure chamber por-
The structure of claim 1 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

22. The structure of claim 1 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

23. The structure of claim 1 wherein said metering orifice means is a necked down passage interconnecting said capsule propellant chamber and said pressure chamber.

24. The structure of claim 23 wherein said propellant chamber has a transverse section of substantially square configuration.

25. The structure in accordance with claim 1 wherein a rearward wall of said pressure chamber portion has a pre-formed weakened section for use with a recoil vent in breech means of a recoilless system.

26. The structure of claim 25 wherein said propellant chamber has a transverse section of polygonal configuration.

27. The structure in accordance with claim 25 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

28. The structure of claim 27 wherein said transverse section is of substantially square configuration.

29. The structure of claim 25 wherein said propellant chamber has a transverse section of substantially triangular configuration.

30. The structure in accordance with claim 1 wherein wall portions of said elongated chamber and propellant capsule chamber are connected by a transversely extending wall, said chamber wall portions being transversely spaced from each other and having transversely aligned operative port means defining said metering orifice means.

31. The structure of claim 30 wherein said propellant chamber has a transverse section of polygonal configuration.

32. The structure of claim 30 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

33. The structure of claim 30 wherein said propellant chamber less has longitudinally extending external wall portions including means for connecting an adjacent capsule.

34. The structure of claim 30 wherein said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

35. The structure in accordance with claim 34 wherein said propellant chamber has a transverse section of polygonal configuration.

36. The structure of claim 30 wherein said port means includes a gas vent in said elongated chamber wall portion and a pre-formed weakened section in said propellant capsule chamber wall portion.

37. The structure of claim 36 wherein said propellant chamber has a transverse section of polygonal configuration.

38. The structure of claim 36 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

39. The structure of claim 36 wherein said propellant chamber has longitudinally extending external wall portions including means for connecting and adjacent capsule.

40. The structure of claim 36 wherein said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

41. The structure of claim 40 wherein said propellant chamber has a transverse section of polygonal configuration.

42. The structure in accordance with claim 30 wherein an upper surface of said propellant chamber has a pre-formed weakened section.

43. The structure of claim 42 wherein said propellant chamber has a transverse section of polygonal configuration.

44. The structure of claim 42 wherein said propellant chamber has a transverse section of substantially square configuration, and said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

45. The structure in accordance with claim 42 wherein each propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

46. The structure of claim 42 wherein said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

47. The structure of claim 46 wherein said propellant chamber has a transverse section of polygonal configuration.

48. The structure in accordance with claim 42 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

49. The structure of claim 48 wherein said transverse section is of substantially square configuration.

50. The structure of claim 42 wherein said propellant chamber has a transverse section of substantially triangular configuration.

51. The structure in accordance with claim 1 wherein said pressure chamber portion has an open rearward end.

52. The structure of claim 51 wherein said propellant chamber has a transverse section of polygonal configuration.

53. The structure in accordance with claim 51 wherein said propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

54. The structure in accordance with claim 51 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

55. The structure of claim 54 wherein said transverse section is of substantially square configuration.

56. The structure of claim 51 wherein said propellant chamber has a transverse section of substantially triangular configuration.

57. The structure in accordance with claim 51 wherein said propellant capsule chamber has opposed longitudinally extending external wall portions, one of said wall portions having a longitudinally extending
groove and the other wall portion having a tongue protruberance of a substantially similar configuration as said groove.

58. The structure of claim 57 wherein said propellant chamber has a transverse section of polygonal configuration.

59. The structure of claim 57 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

60. The structure of claim 59 wherein said transverse section is of substantially square configuration.

61. The structure of claim 57 wherein said propellant chamber has a transverse section of substantially triangular configuration.

62. The structure in accordance with claim 51 wherein an upper surface of said propellant chamber has a pre-formed weakened section.

63. The structure in accordance with claim 62 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

64. The structure of claim 63 wherein said transverse section is of substantially square configuration.

65. The structure of claim 62 wherein said propellant chamber has a transverse section of substantially triangular configuration.

66. The structure of claim 62 wherein said propellant chamber has a transverse section of polygonal configuration.

67. The structure of claim 62 wherein each propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

68. The structure of claim 61 wherein said propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

69. The structure in accordance with claim 68 wherein said connecting means is partially defined by a longitudinally extending groove in one of said external wall portions, said groove extending to the rearward edge of said capsule.

70. The structure of claim 69 wherein a rearward wall of said pressure chamber portion has a pre-formed weakened section for use with a recoil vent in breech means of a recoilless system.

71. The structure of claim 52 wherein inwardly protruding simplex means are located on the internal surface of said pressure chamber portion.

72. The structure of claim 71 wherein said propellant chamber has a transverse section of polygonal configuration.

73. The structure in accordance with claim 71 wherein each propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

74. The structure of claim 73 wherein inwardly directed flange means are provided on the forward end of said barrel portion.

75. The structure of claim 74 wherein said propellant chamber has a transverse section of polygonal configuration.

76. The structure of claim 74 wherein each propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

77. The structure of claim 74 wherein said elongated chamber has a longitudinally slotted wall portion.

78. The structure of claim 77 wherein said propellant chamber has a transverse section of polygonal configuration.

79. The structure of claim 77 wherein said propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

80. The structure in accordance with claim 77 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

81. The structure of claim 80 wherein said transverse section is of substantially square configuration.

82. The structure of claim 77 wherein said propellant chamber has a transverse section of substantially triangular configuration.

83. The structure of claim 71 wherein said elongated chamber has a longitudinally slotted wall portion.

84. The structure of claim 83 wherein said propellant capsule chamber has a transverse section of polygonal configuration.

85. The structure of claim 83 wherein each propellant chamber has longitudinally extending external wall portions including means for connecting an adjacent capsule.

86. The structure in accordance with claim 83 wherein said propellant capsule chamber has opposed longitudinally extending external wall portions, one of said wall portions having a longitudinally extending groove and the other wall portion having a tongue protruberance of a substantially similar configuration as said groove.

87. The structure in accordance with claim 86 wherein said propellant chamber has a transverse section of polygonal configuration.

88. The structure of claim 86 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

89. The structure of claim 88 wherein said transverse section is of substantially square configuration.

90. The structure of claim 86 wherein said propellant chamber has a transverse section of substantially triangular configuration.

91. The structure in accordance with claim 80 wherein an upper surface of said propellant chamber has a pre-formed weakened section.

92. The structure of claim 91 wherein said propellant chamber has a transverse section of polygonal configuration.

93. The structure in accordance with claim 91 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

94. The structure of claim 93 wherein said transverse section is of substantially square configuration.

95. The structure of claim 9 wherein said pressure chamber portion has means spaced from said primer for rearwardly exhausting operatively developed pressure gas therefrom.

96. The structure in accordance with claim 83 wherein an upper surface of said propellant chamber has a pre-formed weakened section, and said propellant chamber has a transverse section of polygonal configuration.

97. The structure of claim 96 wherein said propellant capsule chamber has opposed longitudinally extending external wall portions, one of said wall portions having a longitudinally extending groove and the other wall...
portion having a tongue protuberance of a substantially similar configuration as said groove.

98. The structure of claim 96 wherein wall portions of said elongated chamber and propellant capsule chamber are connected by a transversely extending wall, said chamber wall portions being transversely spaced from each other and having transversely aligned operative port means defining said metering orifice means.

99. The structure in accordance with claim 96 wherein said propellant chamber has a transverse section of substantially rectangular configuration.

100. The structure of claim 99 wherein said transverse section is of substantially square configuration.

101. The structure of claim 96 wherein said propellant chamber has a transverse section of substantially triangular configuration.

102. The structure of claim 95 wherein said propellant chamber has a transverse section of polygonal configuration.
APPENDIX B

Representative Firing Data
APPENDIX B

Representative Firing Data

<table>
<thead>
<tr>
<th>Rd No.</th>
<th>Weapon</th>
<th>Muzzle Velocity (fps)</th>
<th>Chamber Pressure (KPSI)</th>
<th>Bolt Cavity Pressure (KPSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>391</td>
<td>Belgian LAR</td>
<td>3007</td>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>392</td>
<td>(Modified)</td>
<td>2966</td>
<td>45.0</td>
<td>"</td>
</tr>
<tr>
<td>393</td>
<td></td>
<td>3226</td>
<td>44.5</td>
<td>"</td>
</tr>
<tr>
<td>394</td>
<td></td>
<td>3262</td>
<td>50.0</td>
<td>"</td>
</tr>
<tr>
<td>395</td>
<td></td>
<td>3134</td>
<td>43.0</td>
<td>"</td>
</tr>
<tr>
<td>396</td>
<td></td>
<td>3028</td>
<td>39.5</td>
<td>"</td>
</tr>
<tr>
<td>397</td>
<td></td>
<td>3222</td>
<td>43.5</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>Belgian LAR</td>
<td>2972</td>
<td>44.5</td>
<td>N</td>
</tr>
<tr>
<td>399</td>
<td>(Modified)</td>
<td>2874</td>
<td>48.0</td>
<td>"</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>3040</td>
<td>41.5</td>
<td>"</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td>3228</td>
<td>41.5</td>
<td>"</td>
</tr>
<tr>
<td>402</td>
<td></td>
<td>3037</td>
<td>44.5</td>
<td>"</td>
</tr>
<tr>
<td>403</td>
<td></td>
<td>3166</td>
<td>44.5</td>
<td>"</td>
</tr>
<tr>
<td>404</td>
<td></td>
<td>3046</td>
<td>44.5</td>
<td>"</td>
</tr>
<tr>
<td>405</td>
<td></td>
<td>3105</td>
<td>43.0</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>M-16 Al</td>
<td>3218</td>
<td>N</td>
<td>16.5</td>
</tr>
<tr>
<td>407</td>
<td>(Modified)</td>
<td>-</td>
<td>"</td>
<td>15.0</td>
</tr>
<tr>
<td>408</td>
<td></td>
<td>3169</td>
<td>"</td>
<td>11.0</td>
</tr>
<tr>
<td>409</td>
<td></td>
<td>3249</td>
<td>"</td>
<td>11.0</td>
</tr>
<tr>
<td>410</td>
<td></td>
<td>3211</td>
<td>"</td>
<td>19.5</td>
</tr>
<tr>
<td>411</td>
<td></td>
<td>3223</td>
<td>"</td>
<td>19.5</td>
</tr>
<tr>
<td>412</td>
<td></td>
<td>3174</td>
<td>"</td>
<td>20.0</td>
</tr>
<tr>
<td>413</td>
<td></td>
<td>3271</td>
<td>"</td>
<td>19.5</td>
</tr>
<tr>
<td>414</td>
<td></td>
<td>3213</td>
<td>"</td>
<td>19.5</td>
</tr>
</tbody>
</table>

\[
\bar{v} = 3121 \quad \bar{P} = 44.2
\]

\[
\bar{v} = 3059 \quad \bar{P} = 44.0
\]

\[
\bar{v} = 3228 \quad \bar{P} = 16.8
\]

N - Not Measured
APPENDIX C

Tool Drawings for Case Extrusion Process
Section A-A

Material: QQ-T-570, Class D.S. R67-59

Holes for 7/16 bolt

Holes for 5/16 dia x 7/8 grooved threaded

Physical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>2.7500 AIA</td>
</tr>
</tbody>
</table>

Tolerances

- **Material:** As Noted
- **Heat Treatment:** As Noted
- **Application:** Do Not Apply Part No
- **Final Protective Finish:** As Required
- **Size:** Do Not Indicate

First Capsule Extrusion Die

ORDNANCE CORPS
DEPT OF THE ARMY

MDS-5-2
<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Knock-Out</td>
<td>2.250</td>
</tr>
<tr>
<td>2nd Knock-Out</td>
<td>2.250</td>
</tr>
<tr>
<td>Cap Tool</td>
<td>3.000</td>
</tr>
</tbody>
</table>

Key Dimensions:
- 0.220
- 0.500
- 1.000
- 2.500

Notes:
- 3/8" All Over
- 1/8" Knock-Out Holes

Scale: 1:1
APPENDIX D

Folded Cartridge Details
APPENDIX E

Modified M6A1 Details
<table>
<thead>
<tr>
<th>NO</th>
<th>NOMENCLATURE</th>
<th>SKETCH NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.56mm Folded Rifle, Assembly</td>
<td>JAD-1</td>
</tr>
<tr>
<td>2</td>
<td>5.56mm Folded Rifle, Sectioned Isometric Ass'y</td>
<td>JAD-2</td>
</tr>
<tr>
<td>3</td>
<td>Barrel (2 Sheets)</td>
<td>JAD-3</td>
</tr>
<tr>
<td>4</td>
<td>Firing Pin</td>
<td>JAD-4</td>
</tr>
<tr>
<td>5</td>
<td>Bolt Face</td>
<td>JAD-5</td>
</tr>
<tr>
<td>6</td>
<td>Bolt Extension</td>
<td>JAD-6</td>
</tr>
<tr>
<td>7</td>
<td>Bolt Carrier Modification</td>
<td>JAD-7</td>
</tr>
<tr>
<td>8</td>
<td>Upper Receiver Housing Modification</td>
<td>JAD-8</td>
</tr>
<tr>
<td>9</td>
<td>Barrel Coupling</td>
<td>JAD-9</td>
</tr>
<tr>
<td>10</td>
<td>Buffer</td>
<td>JAD-10</td>
</tr>
<tr>
<td>11</td>
<td>Expeller lever</td>
<td>JAD-11</td>
</tr>
<tr>
<td>12</td>
<td>Expeller Shaft</td>
<td>JAD-12</td>
</tr>
<tr>
<td>13</td>
<td>Expeller Bearing</td>
<td>JAD-13</td>
</tr>
<tr>
<td>14</td>
<td>Magazine Housing</td>
<td>JAD-14</td>
</tr>
<tr>
<td>15</td>
<td>Lower Housing Modification</td>
<td>JAD-15</td>
</tr>
<tr>
<td>16</td>
<td>Sear, Automatic Modification</td>
<td>JAD-16</td>
</tr>
<tr>
<td>17</td>
<td>Pins, Lower Housing Assembly</td>
<td>JAD-17</td>
</tr>
<tr>
<td>18</td>
<td>Magazine, Assembly</td>
<td>JAD-18</td>
</tr>
<tr>
<td>19</td>
<td>Magazine, Body</td>
<td>JAD-19</td>
</tr>
<tr>
<td>20</td>
<td>Magazine, Spring</td>
<td>JAD-20</td>
</tr>
<tr>
<td>21</td>
<td>Magazine, Base</td>
<td>JAD-21</td>
</tr>
<tr>
<td>22</td>
<td>Magazine, Follower</td>
<td>JAD-22</td>
</tr>
<tr>
<td>23</td>
<td>Chamber, Reamers</td>
<td>JAD-23</td>
</tr>
</tbody>
</table>
MATERIAL: Alloy Steel - Rc 30-35
MATERIAL: Alloy Steel, R_c 38-42
MATERIAL: Alloy Steel, R_c 38-42
Remove key via two set screws

Modification - Grind a .375 inch wide groove having an .075 inch diameter.
Folded Arms Rifle

Upper Receiver Housing

JAO-8
Roll PINS

STD MIL/AL BUFFER

MATERIAL: Steel

1.575
1.605
1.574
1.602
1.001
1.005
0.005
0.003
0.005
0.003
2.300
4.005
Added length

89
MATERIAL: Steel 4340; Heat-treated Rc 42 ± 2

NO CENTERS
Folded AMMO

Rifle

SEAR, AUTOMATIC

JAD-16
FOLDED AMMO

PINS, LOWER HOUSING ASSEMBLY

JAD-17
1. Magazine Body JAD-19
2. Spring JAD-20
3. Magazine Base JAD-21
4. Follower JAD-22
5. Roll Pin
MATERIAL: Steel/brass
Folded Ammo Rifle

Magazine Spring

Wire Diam. - .054
No. Coils - 13
Length - 1 1/8
Width - 5/8
Free Length - 7 1/2
Material - music wire
Folded AMMO J

BASE, MA9221

JAD-21

MATERIAL: Aluminum
MATERIAL: Aluminum
APPENDIX F

Modified Belgian LAR Details
<table>
<thead>
<tr>
<th>Sketch No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Side Cover (Cocking Lever), Mod II</td>
</tr>
<tr>
<td>2</td>
<td>Detent, Magazine Catch</td>
</tr>
<tr>
<td>3</td>
<td>Latch, Magazine, Mod II</td>
</tr>
<tr>
<td>4</td>
<td>Sub-Assembly, Magazine, Adaptor</td>
</tr>
<tr>
<td>5</td>
<td>Back Magazine, Flap-Folded</td>
</tr>
<tr>
<td>6</td>
<td>Body Magazine, Flap-Folded</td>
</tr>
<tr>
<td>7</td>
<td>End, Magazine</td>
</tr>
<tr>
<td>8</td>
<td>Follower, Mod II</td>
</tr>
<tr>
<td>9</td>
<td>Spring, Magazine, Mod II</td>
</tr>
<tr>
<td>10</td>
<td>Tube, Magazine Sub-Assembly, Mod II</td>
</tr>
<tr>
<td>11</td>
<td>Rod, Piston</td>
</tr>
<tr>
<td>12</td>
<td>Adapter, Gas Cylinder, Mod II</td>
</tr>
<tr>
<td>13</td>
<td>Piston</td>
</tr>
<tr>
<td>14</td>
<td>Detail of Groove Cylinder, Gas, Mod II</td>
</tr>
<tr>
<td>15</td>
<td>Cylinder, Gas, Mod II</td>
</tr>
<tr>
<td>16</td>
<td>Sleeve, Mod II</td>
</tr>
<tr>
<td>17</td>
<td>Socket, Gas Tube, Mod II</td>
</tr>
<tr>
<td>18</td>
<td>Spring, Expeller Return</td>
</tr>
<tr>
<td>19</td>
<td>Extension, Expeller, Mod II</td>
</tr>
<tr>
<td>20</td>
<td>Expeller, Mod II</td>
</tr>
<tr>
<td>21</td>
<td>Spring, Pin, Bolt</td>
</tr>
<tr>
<td>22</td>
<td>Spring, Return Firing Pin</td>
</tr>
<tr>
<td>23</td>
<td>Pin, Bolt Support, Mod II</td>
</tr>
<tr>
<td>24</td>
<td>Carrier, Bolt, Mod II</td>
</tr>
<tr>
<td>25</td>
<td>Firing Pin, Mod II</td>
</tr>
<tr>
<td>26</td>
<td>Front Sight Sub-Assembly, Modified I.A.R.</td>
</tr>
<tr>
<td>27</td>
<td>Kicker</td>
</tr>
<tr>
<td>28</td>
<td>Handle, Mod II</td>
</tr>
<tr>
<td>29</td>
<td>Barrel (Detail), Mod II</td>
</tr>
<tr>
<td>30</td>
<td>Barrel, Mod II</td>
</tr>
<tr>
<td>31</td>
<td>Receiver, Kicker Slot Detail, Mod II</td>
</tr>
<tr>
<td>32</td>
<td>Pawl, Mod II</td>
</tr>
<tr>
<td>33</td>
<td>Bolt, Mod II</td>
</tr>
<tr>
<td>34</td>
<td>Magazine Adaptor, Flap 5.56 mm Folded</td>
</tr>
<tr>
<td>35</td>
<td>Sub-Assembly, Gas System</td>
</tr>
<tr>
<td>36</td>
<td>Bolt, Sub-Assembly</td>
</tr>
<tr>
<td>37</td>
<td>Bullet, Chamber, Reamer</td>
</tr>
<tr>
<td>38</td>
<td>Fore Arm, Mod II</td>
</tr>
<tr>
<td>39</td>
<td>Chamber, Mod II</td>
</tr>
</tbody>
</table>
REMOVE KNOB

\[\frac{1}{4} \text{- 28 NW} \]

(For dog AT set screw)

\[\frac{1}{4} \text{- lock} \]

MKT No 1. Side Cover (Cocking Lever, Mod II)
MATERIAL: Spring Wire - .0590

MSF No 2. Detent, Magazine Catch
MATERIAL: Alloy Steel (Rc 48-50)

MKF No 3. Latch, Magazine, Mod II
ADAPTOR, MAGAZINE
LATCH, MAGAZINE
DETENT, MAGAZINE LATCH
SCREW - 6-32 x $\frac{1}{2}$ LONG

MKF No 6. Body Magazine, Flap-Folded
ENDS CLOSED - 52.
8 WORKING COILS.

MATERIAL: Spring Wire - .059 dia.

MKE No 9. Spring, Magazine, Mod II
MATERIAL: Alloy Steel, Rc 45-45

MKF No 12. Adapter, Gas Cylinder, Mod II
MATERIAL: Alloy Steel, R_c 58-60

MKF No 13. Piston
NOTE

MACHINE GROOVE
AFTER ASSEMBLY WITH
FRONT SIGHT BRACKET
AND GUS CYLINDER NUTTER

MRF No 14. Detail of Groove Cylinder, Gas, Mod II
MATERIAL: Alloy Steel, R c 45-48

MKF No 13. Cylinder, Gas, Mod II
MATERIAL: Alloy Steel, RC 55-60

MRF No 16, Sleeve, Mod II
MATERIAL: Alloy Steel, R$_c$ 53-55

MKF No 19. Extension, Expeller, Mod II
MATERIAL: Music Wire, *.015_D*
MKF No 21. Spring, Pin, Bolt
32 working coils

MATERIAL: Music Wire, .032_D

MKF No 22. Spring, Return, Firing Pin
MATERIAL: Alloy Steel, R_c 45-48

MKF No 23. Pin, Bolt Support, Mod II
MATERIAL: Aluminum

MKF No 28. Handle, Mod II
MKF No 29. Barrel (Detail), Mod II
NOTES
1. THRVL BLANK W/ BORE OFFSET
2. ADJUST SHOULDER SO THAT OFFSET IS HORIZONTAL TO THE LEFT
 USE FLAT RECIIVER, WITH 150 FT-LB TORQUE

5.56 mm - 1/9 Twist

MKF No 30. Barrel, Mod II
MATERIAL: Alloy Steel, R 58-60

MKF No 33. Bolt, Mod II
NOTE: Additional holes added to reduce weight.

MATERIAL: Steel

NRF No 34. Magazine Adaptor, Flm 5.56 mm Folded
MKF No 36. Bolt, Sub-Assembly
Commander
US Army - Harry Diamond Laboratory
ATTN: DRXDO-7IB
2800 Powder Mill Road
Adelphia, MD 0783

Commander
Lake City Army Ammunition Plant
Independence, MO 64056

Defense Advanced Research
Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Commander
Naval Weapons Center
ATTN: Code 4022
China Lake, CA 93555

Commander
US Naval Ordnance Systems
ATTN: ORD-9112
Washington, DC 20360

Commander
Rock Island Arsenal
ATTN: SARRI-LS
Rock Island, IL 61201

Commander
Hill Air Force Base
Ogden, UT 84406

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base
Dayton, OH 45433

Commander
US Air Force Armament Laboratory
ATTN: DLDC, D. Davis
Eglin Air Force Base, FL 32542

Commander
US Army Ballistic Research Laboratory
ATTN: Dr. Eichberger
Aberdeen Proving Ground, MD 21005

Chief, Research & Development
Department of the Army
ATTN: CRDSW
Washington, DC 20310

Commander
USARCOM
ATTN: DRCM-MCV
Warren, MI 48090

Commander
US Army Materials & Mechanics
Research Center
ATTN: Technical Info Division
Watertown, MA 02172

Commander
US Marine Corps
ATTN: A04F; AX
Washington, DC 20380

Commander
US Army Materiel System Analysis
Agency
ATTN: Dr. Sperraza
Aberdeen Proving Ground, MD 21005

Commander
Foreign Science Technology Center
ATTN: AMXST-MCI
Charlottesville, VA 22901

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Commander
US Army Armament Resch & Dev Command
ATTN: Dr. D. Gyorog, Dep Dir
DRDAR-SC
Picatinny Arsenal
Dover, NJ 07801